Use of active Intrathoracic Pressure Regulation during resuscitation

Nicolas Segal MD PhD

Department of Emergency Medicine, University of New Mexico, Albuquerque, NM
FINANCIAL DISCLOSURE

I have the following financial interests or relationships to disclose:

none
Manipulating Intrathoracic Pressures

- IPR has been used initially for cardiac arrest, then in spontaneously breathing patients. It can now be used on mechanically ventilated patients.
Manipulating Intrathoracic Pressures

- IPR has been used initially for cardiac arrest, then in spontaneously breathing patients. It can now be used on mechanically ventilated patients.
- a-IPR therapy is delivered with a device that is inserted into a standard respiratory circuit between the patient and a means to provide positive pressure ventilation (bag valve balloon or mechanical ventilator).
Manipulating Intrathoracic Pressures

- IPR has been used initially for cardiac arrest, then in spontaneously breathing patients. It can now be used on mechanically ventilated patients.
- a-IPR therapy is delivered with a device that is inserted into a standard respiratory circuit between the patient and a means to provide positive pressure ventilation (bag valve balloon or mechanical ventilator).
- a-IPR lowers intrathoracic pressures to subatmospheric levels during the expiratory phase of positive pressure ventilation.
Manipulating Intrathoracic Pressures

CPR

0

-8 cmH\textsubscript{2}O

ResQPOD
Manipulating Intrathoracic Pressures

CPR

Spontaneously Breathing

-8 cmH₂O

-7 cmH₂O

ResQPOD

ResQGARD
Manipulating Intrathoracic Pressures

CPR
Spontaneously Breathing
Mechanically Ventilated

-8 cmH$_2$O
-7 cmH$_2$O
-12 cmH$_2$O

ResQPOD
ResQGARD
CirQLator
Manipulating Intrathoracic Pressures

CPR

Spontaneously Breathing

Mechanically Ventilated

-8 cmH₂O

-7 cmH₂O

-12 cmH₂O

ResQPOD

ResQGARD

CirQLator

CirQPOD
Manipulating Intrathoracic Pressures

CPR

Spontaneously Breathing

Mechanically Ventilated

-12 cmH₂O - 7 cmH₂O

-8 cmH₂O

ResQPOD

ResQGAKD

CirQLator

CirQPOD
Effect of aIPR on Tracheal, Aortic, Intracranial Pressures during CPR
aIPR improved vital organ perfusion compared to S-CPR.

Yannopoulos et al., Circulation 2005;112(6):803-11
aIPR improved 24-hour survival with favorable neurologic function

Total epinephrine during the post-ROSC period was significantly reduced with a-IPR (0.08 ± 0.09 vs 0.29 ± 0.12 mg, p<0.01).

Metzger et al., NAEMSP 2017
ETCO2 levels and ROSC rates were significantly higher in the 11 IPR patient compared to the 74 control patient.

Intrathoracic Pressure Regulation Physiology

- a-IPR enhances venous return and lowers central venous pressure.
• a-IPR enhances venous return and lowers central venous pressure.
• The increase in venous blood flow back to the heart, increases cardiac preload and consequently, stroke volume and cardiac index.
Intrathoracic Pressure Regulation Physiology

- a-IPR enhances venous return and lowers central venous pressure.
- The increase in venous blood flow back to the heart, increases cardiac preload and consequently, stroke volume and cardiac index.
- Combined, these effects result in an increase in mean systemic arterial pressure, cardiac output, and coronary and cerebral perfusion.
Intrathoracic Pressure Regulation Physiology

- a-IPR enhances venous return and lowers central venous pressure.
- The increase in venous blood flow back to the heart, increases cardiac preload and consequently, stroke volume and cardiac index.
- Combined, these effects result in an increase in mean systemic arterial pressure, cardiac output, and coronary and cerebral perfusion.
- a-IPR improves venous drainage from the brain, lowers ICP, and reduces the resistance to forward blood flow to the brain.
Other uses

- aIPR can also be used on:
 - brain injury,
 - septic shock,
 - hemorrhagic shock,
 - intraoperative hypotension.
Conclusion

• Even if a-IPR was recently approved by the FDA, several questions remain unanswered, in particular, the exact indication and duration of use.
• Further human clinical evaluation of the therapy will be necessary before a broad use is possible.
Thank you!

nsegal@salud.unm.edu